Interpolation Categories for Homology Theories
نویسنده
چکیده
For a homological functor from a triangulated category to an abelian category satisfying some technical assumptions we construct a tower of interpolation categories. These are categories over which the functor factorizes and which capture more and more information according to the injective dimension of the images of the functor. The categories are obtained by using truncated versions of resolution model structures. Examples of functors fitting in our framework are given by every generalized homology theory represented by a ring spectrum satisfying the Adams-Atiyah condition. The constructions are closely related to the modified Adams spectral sequence and give a very conceptual approach to the associated moduli problem and obstruction theory. As application we establish an isomorphism between certain E(n)-local Picard groups and some Ext-groups.
منابع مشابه
Some aspects of cosheaves on diffeological spaces
We define a notion of cosheaves on diffeological spaces by cosheaves on the site of plots. This provides a framework to describe diffeological objects such as internal tangent bundles, the Poincar'{e} groupoids, and furthermore, homology theories such as cubic homology in diffeology by the language of cosheaves. We show that every cosheaf on a diffeological space induces a cosheaf in terms of t...
متن کاملSemi-abelian categories, torsion theories and factorisation systems
Semi-abelian categories [5] provide a suitable axiomatic context to study, among other things, the (co)homology of non-abelian algebraic structures (such as groups, compact groups, crossed modules, commutative rings, and Lie algebras), torsion and radical theories, and commutator theory. In this talk a brief introduction to some elementary properties of these categories will be given, before fo...
متن کاملBaer Invariants in Semi-abelian Categories Ii: Homology
This article treats the problem of deriving the reflector of a semi-abelian category A onto a Birkhoff subcategory B of A. Basing ourselves on Carrasco, Cegarra and Grandjeán’s homology theory for crossed modules, we establish a connection between our theory of Baer invariants with a generalization—to semi-abelian categories— of Barr and Beck’s cotriple homology theory. This results in a semi-a...
متن کاملFunctor Homology and Operadic Homology
The purpose of these notes is to define an equivalence between the natural homology theories associated to operads and the homology of functors over certain categories of operators (PROPs) related to operads.
متن کاملTopological Conformal Field Theories and Calabi-yau Categories
This paper concerns open, closed, and open-closed topological conformal field theories. We show that the category of open topological conformal field theories, at all genera, is homotopy equivalent to a category of Calabi-Yau A∞ categories. For each such, we show that there is a universal closed TCFT, which is the initial element in the category of compatible open-closed TCFTs. The homology of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004